Liquid Metal-Vitrimer Conductive Composite for Recyclable and Resilient Electronics
발표자
호동해 (DGIST)
연구책임자
호동해 (DGIST)
초록
내용
Here, recyclable and healable electronics are reported through a vitrimer-liquid metal (LM) microdroplet composite. These electrically conductive, yet plastic-like composites display mechanical qualities of rigid thermosets and recyclability through a dynamic covalent polymer network. The composite exhibits a high glass transition temperature, good solvent resistance, high electrical conductivity, and recyclability. The vitrimer synthesis proceeds without the need for a catalyst or a high curing temperature, which enables facile fabrication of the composite materials. The as-synthesized vitrimer exhibits a fast relaxation time with reconfigurability and shape memory. The electrically conductive composite exhibits high electrical conductivity with LM volume loading as low as 5 vol.%. This enables the fabrication of fully vitrimer-based circuit boards consisting of sensors and indicator LEDs integrated with LM-vitrimer conductive wiring.