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Research Paradigm Shift to the Platform : Materials Square
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Over the past few decades, the world has faced global crises such as energy, food problems and global warming. We need more creative and fascinat-
ing research paradigms regardless of the races and nationalities to overcome the problems. We are trying to find clues from the materials research.
“Edisonian Approach (Trial-and-Error)” still being widely used in various fields of research. One tries numerous elements in the periodic table through
trial and error to design a new material. In modern electronic device manufacturing, however, this method is no longer available due to the high-cost
raw materials and micro—processing. Research paradigm should be changed. In few decades, simulation-based research has attracted attention with
the development of computational power and the efficient methodologies, called “In Silico Approach”. Rather than finding a target by experimenting
sequentially, you can experiment with a sample with high probability first via In Silico Approach. Despite these advantages, there are many barriers to
introduce simulation to the research, such as expansive equipment, domain knowledge for computational science and complex Linux environment.
Here, | would like to introduce “Materials Square”, cloud-based materials/chemistry simulation platform. Materials Square provides everything you
need for cutting-edge materials/chemistry simulation, simulation modeling/computational server/analysis, with a cloud- based intuitive user
interface. Virtual Lab is doing its best to change into a new research paradigm shift to the platform so that all researchers around the world can commu-
nicate through Materials Square.
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Discovery of new molecules and materials with desired properties is a practical goal of chemical research. A promising way to significantly acceler-
ate the latter process is to incorporate all available knowledge and data to plan the synthesis of the next materials. In this talk, | will present several
directions to use informatics and machine learning to efficiently explore chemical space. | will first describe methods of machine learning for fast
and reliable predictions of materials and molecular properties. With these tools in place for property evaluation, | will then present a few generative
frameworks that we have recently developed to allow the inverse design of molecules and materials with optimal target properties, either in the
compositional space or structural space. One general challenge in digital discovery is that many of the molecules and materials that are computa-
tionally designed are often discarded in the laboratories since they are not synthesizable. | will thus lastly spend some time to talk about the
synthesizability of molecules and materials, either by predicting the synthesis pathways (retrosynthesis) or chemical reactivity. Several challeng-
es and opportunities that lie ahead for further developments of accelerated chemical platform will be discussed.
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2. Unconventional Band Pass Filters for Bioelectronics ZENY | MRSt Siskg st

Biophysiology detection from current advanced electronics is limited by external signal artifacts (e.g. walking and respiration). Here, we present the

viscoelastic gelatin/chitosan hydrogel damper inspired by the viscoelastic cuticular pad in a spider to remove dynamic mechanical noise artifacts

selectively under 30 Hz. The hydrogel exhibits frequency-dependent phase transition that results in a rubbery state that damps low-frequency noise

and a glassy state that transmits the desired high-frequency signals. Instead of the conventional signal processing, the hydrogel damper served as

‘ unconventional pass filter that is able to be integrated with advanced bioelectronics for biophysiology detection even in noisy conditions. Also several
methods for band pass filtering for human physiological signals will be discussed. It can dissolve chronic noise problems in the bioelectronics, and shows
huge potential for uninterrupted monitoring of devices (i.e., gadgets, medical devices, or prostheses) for patients.
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4. Controlling the Thin-Film Formation and Its Properties for High Performance Flexible and Soft Electronics e
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Wearable electronics are being considered the next generation of devices expected to significantly change the way people live and interact with each
other. To fabricate wearable electronics, flexible and/or soft thin-films of various materials such as semiconductors, sensing materials, and intercon-
nects must be formed. Even with the same material, depending on how the thin-film was formed, thin-film properties such as crystallinity, thickness,
packing density, and uniformity changes drastically, which consequently alters its performance. Hence, controlling and understanding thin-film
formation process is of critical importance. In this work, | will discuss various strategies to control the thin—film properties of various materials such as
organic semiconductors, metal organic frameworks, liquid metal composite, particularly using solution-based processing. Analysis of the curved
liquid-air interface (i.e. meniscus) during solidification process and the implementation of microfluidic channels to control the fluid dynamics provide
deeper understanding of the thin—film formation process and how the thin-film properties can be precisely controlled.




